SERVIZIO RADIOTECNICO VOLUME PRIMO STRUMENTI PER RADIOTECNICI

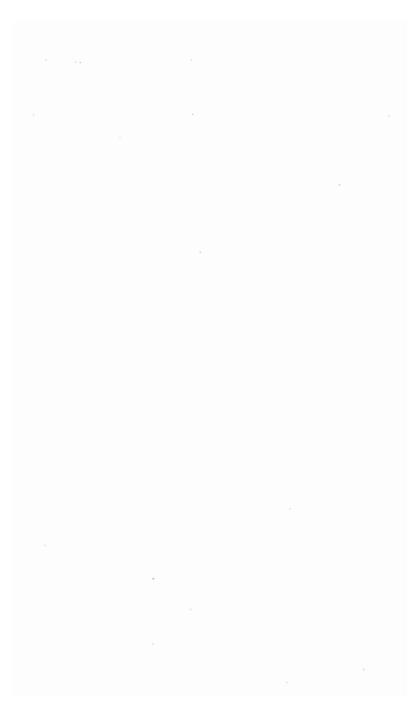
Altri volumi dello stesso Autore sono annunciati nelle ultime pagine del presente volume

IN COPERTINA: FORMULA DELLA LEGGE DI OHM
(coprire con il pollice la grandezza sconosciuta)

TUTTI I DIRITTI SONO RISERVATI

SERVIZIO RADIOTECNICO

VOLUME PRIMO


STRUMENTI RADIOTECNICI

VERIFICHE E MISURE PER LA MESSA A PUNTO E RIPARAZIONE DEGLI APPARECCHI RADIO

MISURE DI TENSIONE, DI CORRENTE, DI RESISTENZA, DI CAPACITÀ, DI INDUTTANZA, DI IMPEDENZA, DI FREQUENZA, DI LUNGHEZZA D'ONDA, DI POTENZA E DI LIVELLO SONORO – DATI COSTRUTTIVI E SCHEMI DI VOLTMETRI, DI MULTIMETRI, DI ANALIZZATORI, DI CAPACIOMETRI, DI FREQUENZIOMETRI, DI ONDAMETRI, DI OSCILLATORI MODULATI, DI CERCATORI DI SEGNALE, ECC.

DECIMA EDIZIONE RINNOVATA ED AMPLIATA

257 fig. di cui 120 schemi di strumenti di misura e di collaudo per il servizio radiotecnico

CAPITOLO PRIMO

MISURE DI TENSIONE E DI CORRENTE

L'AMPEROMETRO, IL MILLIAMPEROMETRO E IL VOLTMETRO

,	Pag.
Strumenti e unità di misura	1
Fondo scala	
SensibIlità	
Esattezza	
II voltmetro	3
Legge di Ohm	
Portata voltmetrica 5	
Resistenza Interna del voltmetro 6	
Ohm per volt	
Come possono risultare falsate le misure di tensione	. 9
Quando è utile il voltmetro ad elevatissima resistenza	
interna	10
Classi di precisione	12
Come si trova la resistenza interna del voltmetro.	13
Portate multiple	14
Come si estende la portata del voltmetro	17
·	
Strumenti per misure di tensione e corrente	20
Esempio di voltmilliamperometro a morsetti	24
Calcolo dei resistori derivati	27
Calcolo dei resistori per un voltmilliamperometro.	28

CAPITOLO SECONDO

MISURE DI RESISTENZA

10

L'OHMMETRO

											Pag.
Misure di resistenza											31
L'ohmmetro											36
Messa a zero dell'ohmmetr	о.										38
Principio dell'ohmmetro a	due	po	rtat	е							41
Principio dell'ohmmetro per	resi	ster	ıze	di	ba	155	0	va	lo	re	43
Esempi di ohmmetri a due											44
Secondo esempio di ohmm											45
Altri esempi di ohmmetri											47
Weston mod. 654											47
Ohmmetro di facile costruz											49
Esempio di ohmmetro per											52
Esempio di ohmmetro alime											56
COMMON TO SECURIOR THE SECURIOR SHOWS											
	IIo										
IL PONTE D	ı wı	EAT	ST	ON	IE						
Principio del Ponte			*1								57
Ponti a rapporto variabile .											61
Esempi di ponti di misura	a fil	٥.									63
Semplici indicatori di zero											67

CAPITO	LO 1	rer:	zo								
STRUMENTI MULTIPLI PE CORRENTE E							Т	ΈI	NS	10	NE,
Semplice strumento per prov											
di tensioni e correnti .											68
Multimetro di facile costruz											69
Strumento multiplo per dile	ettan	ti e	ri	pa	ra	to	ri				71

Pag.
Strumento multiplo senza inseritore 73
Multimetro ad interruttori
Volt-ohmmetro per dilettanti e riparatori 78
Semplice ohmmetro per misure di resistenze di basso
valore
Praticissimo strumento multiplo per radiotecnici ri-
paratori
Un tester tascabile
Un checker per radioriparatori 89
CAPITOLO QUARTO
STRUMENTI PER MISURE A CORRENTE CONTINUA E ALTERNATA
Į0
MISURA DELLE TENSIONI E DELLE CORRENTI ALTERNATE
MISURA DELLE TENSIONI E DELLE CORRENTI ALTERNATE
Voltmetri per corrente alternata 92
Raddrizzatori ad ossido 92
Strumenti con raddrizzatore
Resistenze addizionali 96
Volt-milliamperometro per corrente continua e al-
ternata
Voltmetro con valvola rettificatrice 100
110
MULTIMETRI ED ANALIZZATORI UNIVERSALI
Multimetro per corrente continua e alternata 101
Ohmmetro-voltmetro-milliamperometro per corrente
continua e alternata
Analizzatore universale Weston mod. 772 106
Analizzatore universale Chinaglia mod. PT-3 109
Multimetro per CC-CA con microamperometro 111
Tre esempi di realizzazione pratica di strumento ana-
lizzatore

	Pag.
Portate voltmetriche	
Analizzatori universali LAEL mod. 450 e 542	120
CAPITOLO QUINTO	
MISURA DELLE CAPACITÀ	
IL CAPACIMETRO	
Tipi di capacimetri	124
Prova dei condensatori	124
IL CAPACIMETRO A REATTANZA	
De Harris and Matter	127
Reattanza capacitativa	127
Capacimetri a reattanza a misura di corrente 128	
Capacimetri a reattanza a misura di tensione 130	
Capacimetri per condensatori elettrolitici	133
IL CAPACIMETRO A PONTE	
Districts del considerates a monte	407
Principio del capacimetro a ponte	137 140
Scala dei rapporti	141
Capacimetri a ponte a più portate	144
Estremi della scala 146	
Perdite del condensatore in esame	146
Fattore di potenza	148
Capacimetro a ponte con indicatore elettronico di equilibrio	149
Capacimetro a ponte con oscillatore a bassa fre-	
quenza	151
Capacimetro a ponte con amplificatore e indicatore	450
di equilibrio	153

	Pag.
Strumento a ponte per la misura di resistenze e con-	
densatori	156
Ponte RC con scala a graduazione lineare	161
Ponte di misura per resistenze e condensatori com-	
presi gli elettrolitici	169
Ponte di misura per condensatori elettrolitici 170	
Circuito per la verifica della dispersione 170 Misura delle capacità elevate 172	
Costruzione e messa a punto	
·.	
CAPITOLO SESTO	
L'OSCILLATORE MODULATO	
Caratteristiche generali	174
Tipi di oscillatori modulati	176
Elementi dell'oscillatore modulato	176
Principio dell'oscillatore ad alta frequenza	178
Accopplamento reattivo Hartley 179	
Accopplamento reattivo Meissner	
Accoppiamento reattivo Colpitts	
L'oscillatore ad audiofrequenza	182
Schemi di principio	
La modulazione	186
L'oscillatore ad automodulazione	100
Produzione d'armoniche	190
L'attenuazione del segnale	191
a attenuations der degnater i i i i i i i i i i i i i i i i i i i	
ESEMPI COSTRUTTIVI	
Oscillatore modulato di tipo portatile	196
Taratura	100
Bobine	
Oscillatore modulato con 6BE6 oscillatrice ad alta e	
bassa frequenza	198

	Pag.
Oscillatore modulato con valvola triodo-esodo a cinque gamme di frequenza	202
Oscillatore modulato a tre gamme d'onda e generatore BF separato	206 209 212
Oscillatore modulato con doppio triodo Piccolo generatore di armoniche	218 221 225
ESEMPI DI OSCILLATORI MODULATI DI PRODUZIONE COMMERCIALE	
Oscillatore modulato MIAL mod. 540 A Oscillatore modulato C.G.E. mod. 906 Oscillatore Allocchio Bacchini e Co. mod. 1633 . Oscillatore modulato LAEL mod. 145 Generatore di segnali LAEL mod. 748 Generatore di segnali Philips mod. GM 2883/02 .	228 230 230 234 236 239
CAPITOLO SETTIMO	
IL CERCATORE DI SEGNALE	
Caratteristiche generali	241 242 243 245 248

Un tracer con milliamperometro	Pag. 249 251 255 259					
CAPITOLO OTTAVO						
IL MISURATORE D'USCITA						
Indicatori e misuratori d'uscita	261 262 264 265 266 273 277 278 279 282 284 288					
CAPITOLO NONO						
IL VOLTMETRO A VALVOLA						
Principio basilare	290					
Tipi di voltmetri a valvola	294					
Il voltmetro a valvola semplice	295					

	Pag.
Principio del voltmetro a valvola a ponte Principio del voltmetro a valvola a ponte con doppio	298
triodo	300
ponte di un voltmetro a valvola	307
ATTUAZIONE PRATICA DI VOLTMETRI A VALVOLA	Α.
Voltmetro a valvola di tipo semplice per misure di tensioni continue e alternative	310
Voltmetro a valvola per tensioni continue e alternative con portate sino a 5, 15 e 50 volt Caratteristiche principali	315
Voltmetro a valvola di tipo a ponte per tensioni continue e alternate	321
Esempio di voltmetro a valvola a ponte con doppio triodo	324
Voltmetro a valvola a ponte a due valvole, Philips mod. GM6004	328
CAPITOLO DECIMO	
MISURA DI FREQUENZA E DI LUNGHEZZA D'OI	NDA
L'ondametro	331 331

	Pag.
Formula della lunghezza d'onda	
Ondametri ad assorbimento con rivelatore a cristallo Ondametro eterodina. Il grid dip meter	334 338
Misure di frequenza con il grid dip meter 339 Misura di frequenza ad assorbimento 339 Misura di frequenza a battimenti 339 Misure di piccole capacità con il grid dip meter	
Esempio di ondametro eterodina a dip di griglia .	340
Semplice ondametro eterodina con occhio magico.	342
Ondametro eterodina a dip di placca	343
Dati costruttivi per le bobine	
CAPITOLO UNDICESIMO	
MISURA DI INDUTTANZA E DEL FATTORE DI MERITO DELLE BOBINE	
Induttanza, reattanza induttiva e impedenza	347
Misura d'induttanza delle bobine a nucleo di ferro 347	347
Misura di piccole induttanze con il grid dip meter.	349
Misura di induttanza delle bobine AF con oscillatore	
modulato e voltmetro a valvola	351
Misura dell'induttanza con l'oscillatore modulato e il cercatore di segnali	
E O C D C D C D D D D D D D D D D D D D D	352
Fattore di merito delle bobine	002
Misuratore del fattore di merito delle bobine AF . 353	
Strumento per la misura del fattore di merito	354
Principio del ponte di induttanza	359
Esempio pratico di induttanzimetro a ponte Ponte per la misura di capacità, resistenza ed in-	364
duttanza Philips GM 4144	367
INDICE ALFABETICO	371

•			
		,	
			,
١.			
	,		