
LA MODERNA SUPERETERODINA

FUNZIONAMENTO COSTRUZIONE RIPARAZIONE E TARATURA DEGLI APPARECCHI RADIO

SECONDA EDIZIONE AGGIORNATA

230 figure - 50 circuiti IV tabelle - 1 appendice

EDITORE - ULRICO HOEPLI - MILANO

PREFAZIONE

In questi ultimi due o tre anni l'apparecchio radio ha subito delle variazioni profonde, radicali. Esternamente è forse rimasto quello che era, ma nel suo interno si è avuta una progressiva rivoluzione.

Due o tre anni or sono gli apparecchi radio venivano chiamati « supereterodine ». Oggi non vengono più chiamati così, perchè ormai tutti gli apparecchi radio sono supereterodine, e non possono essere che supereterodine.

Ma la supereterodina costruita due o tre anni or sono sembra ormai un'anticaglia, tanti sono i perfezionamenti apportati in questo periodo di tempo. Per questa ragione ho dovuto profondamente modificare questo libro, eliminando tutto ciò che poteva costituire inutile peso, perchè già superato, ed aggiungendo tutto ciò che la tecnica radio ha recentemente acquisito.

A lavoro ultimato ho dovuto constatare che due terzi dell'edizione precedente erano stati eliminati e sostituiti. Questo semplice fatto può già dare un'idea di quanto rapidamente vada evolvendosi l'apparecchio radio, ossia la moderna supereterodina.

Eppure, vista da lontano — dal punto di vista dei profani — la tecnica degli apparecchi radio sembra quasi immobile. Questo perchè i perfezionamenti attuali non sono facilmente intelligibili da parte dei profani; ma non per questo sono meno importanti e profondi. A tutte queste nuove conquiste della tecnica dei radioricevitori ho cercato di dare un posto preminente in questa nuova edizione.

A lettura finita si potrà avere forse l'impressione che l'apparecchio radio abbia ormai raggiunto un grado notevole di perfezione. Ma anche per gli apparecchi di dieci anni or sono vennero fatte le stesse considerazioni. È più sensato credere che il progresso dell'apparecchio radio non avrà mai sosta. È da sperare che sia così, e che nel campo della radio di immutabile non ci sia che la continua variazione.

L'AUTORE

Bologna, aprile 1936 - XIV

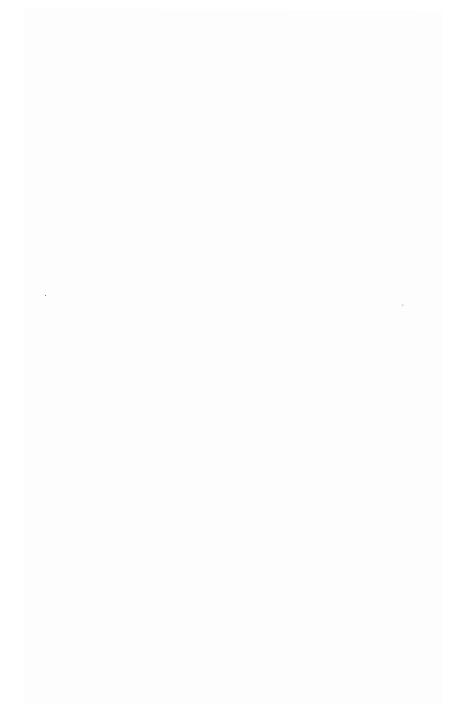
INDICE DEI CAPITOLI

	CAPITOLO I	
	INTRODUZIONE	Pag.
	Principio di funzionamento degli apparecchi radio Radio-onde, cicli e canali	1
	CAPITOLO II	
	IL PRINCIPIO DELLA SUPERETERODINA	
3.	Compiti dell'apparecchio radio	10
	Selettività, sensibilità e fedeltà	12
	Il cambiamento di frequenza	12
	Compiti del ricevitore supereterodina	15 17
•		
	CAPITOLO III	
IL	CAMBIAMENTO DI FREQUENZA ED I FENOM RELATIVI	ENI
8.	La sovrapposizione di due frequenze	20
	Il fenomeno dei battimenti	23
	Il cambiamento di frequenza	26
	I vantaggi della supereterodina	29 33
	L'interferenza d'immagine	34
	La produzione delle armoniche	35
	0.4.017.01.0117	
	CAPITOLO IV ESEMPIO DI RICEVITORE SUPERETERODINA	
	Dall'antenna alla cambiafrequenza	40
	Dalla cambiafrequenza alla rivelatrice	43 48
17.	Dalla valvola finale al diffusore	48
	CAPITOLO V	
	LO STADIO DI ENTRATA	
18.	La selezione dei radio-segnali	50
	Il circuito oscillante	51
20.	Circuiti accoppiati a «filtro di banda»	54

21. Caratteristiche pratiche dello stadio d'entrata

60

	CAPITOLO VI	
	LA VALVOLA CAMBIAFREQUENZA	Pag.
23. 24. 25. 26. 27. 28. 29. 30. 31. 32.	Compito della valvola cambiafrequenza	67 68 69 74 82 87 90 92 94 95 97
34.	Uso degli ottodi Philips	99
	LA MEDIA FREQUENZA	
36. 37.	L'amplificatore a media frequenza	103 111 117 123
	CAPITOLO VIII	
	LA RIVELAZIONE	
40. 41. 42.	I sistemi di rivelazione	127 128 131 134 135
•	CAPITOLO IX	
	IL CONTROLLO AUTOMATICO DI VOLUME	
45. 46. 47.	Che cosa è il controllo automatico di volume? Principi del controllo automatico di volume Controllo automatico di volume ritardato (o dilazionato) La demodulazione ed il c.a.v. con diodo separato Il controllo automatico di volume con triodo separato (nei	137 138 142 148
49.	vecchi ricevitori)	151 156


	Pag.
50. C.a.v. amplificato	157
51. Il c.a.v. con valvole speciali (Wunderlich)	160
52. Filtraggio della tensione c.a.v	163
53. Il c.a.v. e la costante-tempo	165
54. Divisione della tensione c.a.v	166
55. Esempio di c.a.v. in una moderna supereterodina	167
56. Il c.a.v. ed il silenziatore manuale	169
57. II c.a.v. ed il silenziatore automatico	173
CAPITOLO X	
CONTROLLI MANUALI E AUTOMATICI DI TONALI	ΤÀ
58. Il controllo manuale di tono	183
59. Il controllo automatico di tono	189
60. Il contrastatore sonoro	193
0.4.RV=0.4.0.4V	
CAPITOLO XI	
L'INDICATORE OTTICO DI SINTONIA	
ED IL COMANDO A DISTANZA	
61. L'indicatore visivo di sintonia	195
62. Il comando a distanza dei radioricevitori	201
CAPITOLO XII	
57111010 XII	
LA SUPERETERODINA A CIRCUITO RIFLESSO	2
LA SUPERETERODINA A CIRCUITO RIFLESSO	0
LA SUPERETERODINA A CIRCUITO RIFLESSO (Reflex)	-
LA SUPERETERODINA A CIRCUITO RIFLESSO (Reflex) 63. Le supereterodine a poche valvole	O 204
LA SUPERETERODINA A CIRCUITO RIFLESSO (Reflex) 63. Le supereterodine a poche valvole	204
LA SUPERETERODINA A CIRCUITO RIFLESSO (Reflex) 63. Le supereterodine a poche valvole	204 205
LA SUPERETERODINA A CIRCUITO RIFLESSO (Reflex) 63. Le supereterodine a poche valvole	204
LA SUPERETERODINA A CIRCUITO RIFLESSO (Reflex) 63. Le supereterodine a poche valvole	204 205
LA SUPERETERODINA A CIRCUITO RIFLESSO (Reflex) 63. Le supereterodine a poche valvole 64. Principio di funzionamento della supereterodina a circuito riflesso 65. Esempi di supereterodine a circuito riflesso	204 205
LA SUPERETERODINA A CIRCUITO RIFLESSO (Reflex) 63. Le supereterodine a poche valvole 64. Principio di funzionamento della supereterodina a circuito riflesso 65. Esempi di supereterodine a circuito riflesso CAPITOLO XIII SUPERETERODINE PLURIONDA	204 205 209
LA SUPERETERODINA A CIRCUITO RIFLESSO (Reflex) 63. Le supereterodine a poche valvole	204 205 209
LA SUPERETERODINA A CIRCUITO RIFLESSO (Reflex) 63. Le supereterodine a poche valvole 64. Principio di funzionamento della supereterodina a circuito riflesso 65. Esempi di supereterodine a circuito riflesso CAPITOLO XIII SUPERETERODINE PLURIONDA 66. Onde medie, onde corte, ed onde lunghe 67. Metodi di commutazione	204 205 209 211 212
LA SUPERETERODINA A CIRCUITO RIFLESSO (Reflex) 63. Le supereterodine a poche valvole 64. Principio di funzionamento della supereterodina a circuito riflesso 65. Esempi di supereterodine a circuito riflesso CAPITOLO XIII SUPERETERODINE PLURIONDA 66. Onde medie, onde corte, ed onde lunghe 67. Metodi di commutazione 68. Ricevitori supereterodina per due gamme d'onda	204 205 209 211 212 213
LA SUPERETERODINA A CIRCUITO RIFLESSO (Reflex) 63. Le supereterodine a poche valvole 64. Principio di funzionamento della supereterodina a circuito riflesso 65. Esempi di supereterodine a circuito riflesso CAPITOLO XIII SUPERETERODINE PLURIONDA 66. Onde medie, onde corte, ed onde lunghe 67. Metodi di commutazione	204 205 209 211 212
LA SUPERETERODINA A CIRCUITO RIFLESSO (Reflex) 63. Le supereterodine a poche valvole 64. Principio di funzionamento della supereterodina a circuito riflesso 65. Esempi di supereterodine a circuito riflesso CAPITOLO XIII SUPERETERODINE PLURIONDA 66. Onde medie, onde corte, ed onde lunghe 67. Metodi di commutazione 68. Ricevitori supereterodina per due gamme d'onda	204 205 209 211 212 213
LA SUPERETERODINA A CIRCUITO RIFLESSO (Reflex) 63. Le supereterodine a poche valvole 64. Principio di funzionamento della supereterodina a circuito riflesso 65. Esempi di supereterodine a circuito riflesso CAPITOLO XIII SUPERETERODINE PLURIONDA 66. Onde medie, onde corte, ed onde lunghe 67. Metodi di commutazione 68. Ricevitori supereterodina per due gamme d'onda 69. Ricevitori supereterodina per tre gamme d'onda 69. Ricevitori supereterodina per tre gamme d'onda	204 205 209 211 212 213
LA SUPERETERODINA A CIRCUITO RIFLESSO (Reflex) 63. Le supereterodine a poche valvole 64. Principio di funzionamento della supereterodina a circuito riflesso 65. Esempi di supereterodine a circuito riflesso CAPITOLO XIII SUPERETERODINE PLURIONDA 66. Onde medie, onde corte, ed onde lunghe 67. Metodi di commutazione 68. Ricevitori supereterodina per due gamme d'onda 69. Ricevitori supereterodina per tre gamme d'onda CAPITOLO XIV	204 205 209 211 212 213
LA SUPERETERODINA A CIRCUITO RIFLESSO (Reflex) 63. Le supereterodine a poche valvole	204 205 209 211 212 213 218
LA SUPERETERODINA A CIRCUITO RIFLESSO (Reflex) 63. Le supereterodine a poche valvole 64. Principio di funzionamento della supereterodina a circuito riflesso 65. Esempi di supereterodine a circuito riflesso CAPITOLO XIII SUPERETERODINE PLURIONDA 66. Onde medie, onde corte, ed onde lunghe 67. Metodi di commutazione 68. Ricevitori supereterodina per due gamme d'onda 69. Ricevitori supereterodina per tre gamme d'onda CAPITOLO XIV ESEMPI DI RICEVITORI SUPERETERODINA 70. Esempio di ricevitore supereterodina a tre valvole	204 205 209 211 212 213 218

	Pag.
72. Esempio di ricevitore supereterodina per onde medie e corte.	232
73. Esempio di ricevitore supereterodina a 7 valvole alimentato	
con batterie	235
74. Esempio di ricevitore supereterodina a 7 valvole	237
75. Ricevitori supereterodina per c.a. e c.c	237
76. Due esempi di ricevitori supereterodina per c.c. e c.a	244
77. Esempio di ricevitore supereterodina a 5 valvole e per tre	
gamme d'onda	249
78. Esempio di ricevitore supereterodina a 5 valvole per c.c.	257
e c.a	20.
CAPITOLO XV	
	DII I
RICEVITORI SUPERETERODINA DA AUTOMO	DILI
79. Caratteristiche degli apparecchi autoradio	261
80. L'alimentazione dei ricevitori da automobile	265
81. La ricezione a bordo di automobile	268
82. Esempi di ricevitori da automobile	269
CAPITOLO XVI	
LA TARATURA DEI RICEVITORI SUPERETEROD	INA
83. Norme generali per la taratura delle supereterodine	275
84. Esempio di taratura di un ricevitore supereterodina a 5 valvole	
per onde corte e medie	279
85. Messa a punto dei ricevitori supereterodina senza l'oscil- latore. (Cenni per soli dilettanti)	281
86. Taratura delle supereterodine ad onde corte	286
87. La taratura della media frequenza con l'oscillatore modulato.	289
88. Taratura dell'amplificatore a m. f. con bassa attenuazione	209
delle bande laterali	291
89. Regolazione del compensatore in serie (padding)	292
90. Come si ottiene la differenza costante di frequenza tra il	
circuito oscillatore e quello di entrata	295
91. Regolazione del circuito d'assorbimento	298
92. Considerazioni sull'allineamento dei circuiti accordati ad	
alta frequenza	298
CAPITOLO XVII	
STRUMENTI PER LA TARATURA	
•	
DEI RADIORICEVITORI	
93. Esempi di oscillatori per la messa a punto dei ricevitori.	304
94. Esempio di oscillatore modulato a quattro gamme	307
95. Taratura dell'oscillatore modulato	311
96. Il misuratore d'uscita	313
97. Altri usi dell'oscillatore modulato e del misuratore	316

CAPITOLO XVIII

PRINCIPALI DIFETTI DELLE SUPERETERODINE

	Pag
98. Difetti di funzionamento caratteristici dei ricevitori super- eterodina	321
99. Esame del funzionamento della valvola cambiafrequenza con	
strumento oscillatore	323
100. Esame dei circuiti c.a.v	326
101. Le principali cause di fischi nelle supereterodine	327
102. Eliminazione della frequenza d'immagine nella gamma	
onde corte , ,	330
103. Fischi per interferenza d'immagine	331
104. Fischi dovuti alle armoniche dell'oscillatore	333
105. Il ronzio accordato e le sue possibili cause	334
106. L'effetto microfonico nelle supereterodine	335
APPENDICE	339
INDICE ANALITICO-ALFABETICO	361

CAPITOLO PRIMO

INTRODUZIONE

Principio di funzionamento degli apparecchi radio.

La corrente elettrica può portare lontano, correndo lungo dei fili conduttori, le voci ed i suoni. Le radio-onde possono fare altrettanto, irradiandosi nello spazio.

Quando le radio-onde incontrano un'antenna si trasformano in corrente elettrica. Questa corrente, carica dei suoni trasportati dalle radio-onde, scende all'apparecchio radio. Viene potentemente amplificata e quindi serve per produrre le voci ed i suoni.

Non sono le radio-onde, dunque, che scendono all'apparecchio, bensì la corrente da esse determinata nell'antenna. Questa corrente vien detta oscillante. È simile alla corrente alternata che serve per l'illuminazione, con la differenza che le sue alternanze sono assai più rapide.

La corrente oscillante che dall'antenna scende all'apparecchio è estremamente debole. La prima parte dell'apparecchio serve appunto per amplificarla. A tale amplificazione possono provvedere una o più valvole. La figura 1 indica un apparecchio a 3 valvole. Di esse la prima serve per amplificare la corrente oscillante in arrivo.

Una volta amplificata la corrente oscillante deve essere separata dalla corrente musicale che trasporta. Deve cioè servire per produrre una corrente simile ad essa ma che

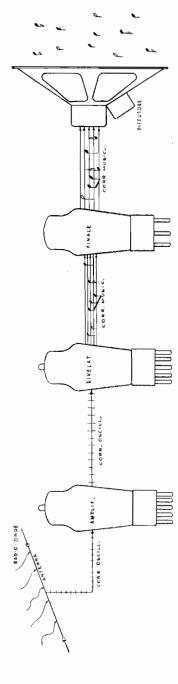


Fig. 1. - Principio di funzionamento di un apparecchio a tre valvole.

non oscilli, ed a questo scopo serve la seconda valvola dell'apparecchio.

Questa seconda valvola non funziona da amplificatrice, ma da rivelatrice. La corrente oscillante che entra in essa esce trasformata in corrente musicale. Ossia, in corrente telefonica. A volte, invece del termine rivelatrice si usa quello di demodulatrice. Il significato non cambia.

La corrente musicale viene amplificata dalla terza valvola. All'uscita di questa valvola si trova il diffusore. La corrente musicale amplificata giungendo ad esso viene trasformata in onde sonore, ossia in voci e suoni.

La prima parte dell'apparecchio radio, quella nella quale è presente la corrente oscillante, si dice ad alta frequenza.

La seconda parte dell'apparecchio radio, quella nella quale è presente la corrente musicale, si dice a bassa frequenza.

Nei moderni apparecchi, ossia nei ricevitori supereterodina; c'è anche una terza parte, detta a media frequenza. Anch'essa però appartiene all'alta frequenza, della quale è una forma speciale che esamineremo tra poco.

La valvola rivelatrice si trova perciò tra la parte ad alta frequenza e quella a bassa frequenza.

La prima parte dell'apparecchio radio ha pure il compito di selezionare le radio-onde in arrivo, ossia quello di permettere l'ingresso ad una sola corrente oscillante: quella prodotta dalle radio-onde provenienti dalla stazione che si desidera ricevere.

2. Radio-onde, cicli, canali.

La voce e i suoni prodotti davanti al microfono della stazione trasmittente vengono affidati alle radio-onde che la stazione irradia nello spazio e che l'apparecchio ricevente raccoglie e traduce nella voce e nei suoni corrispondenti. Le radio-onde rappresentano dell'energia elettrica propagantesi nello spazio con la velocità della luce. Sono di natura

elettromagnetica, ossia metà dell'energia in esse contenuta è elettrica, l'altra è magnetica.

A ciascuna stazione trasmittente corrispondono onde di una data lunghezza fissa, ciò allo scopo di poter separare una stazione dall'altra. Per lunghezza d'onda s'intende lo spazio compreso tra l'inizio di una data onda e l'inizio della seguente, come indica la figura 2.

Le radio-onde sono ottenute inviando all'antenna trasmittente delle correnti a frequenza molto elevata. Per fre-

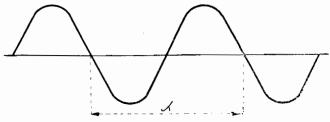


Fig. 2. - Lunghezza d'onda.

quenza s'intende il numero delle inversioni che una corrente alternata subisce in un secondo, ossia il numero dei periodi. Tanto più elevata è la frequenza di una corrente inviata all'antenna trasmittente tanto più corta sarà la lunghezza d'onda irradiata. Mentre la frequenza di una corrente si indica in periodi, quella di una radio-onda si indica in cicli.

La lunghezza di una radio-onda è eguale alla sua velocità in metri e per secondo divisa per il numero dei cicli pure in un secondo. La velocità è costante e si suppone essere 300.000.000 di metri al secondo. Sicchè, se λ è la lunghezza d'onda in metri, f il numero dei cicli per secondo, ossia la freguenza, abbiamo

$$\lambda = \frac{300.000.000}{f}$$

Nello stesso modo la frequenza sarà data dalla relazione

$$f = \frac{300.000.000}{\lambda}$$

Alla lunghezza d'onda di 300 metri corrispondono perciò 1.000.000 di cicli, ossia 1000 chilocicli (abbr. kc) oppure un megaciclo (abbr. Mc). A frequenze alte corrispondono lunghezze d'onda basse ed a frequenze basse lunghezze d'onda alte, esempio: Hilversum = 160 kc e 1875 metri; Roma = 680 kc e 441 metri; Trieste = 1211 kc e 217,7 metri; Città del Vaticano = 5970 kc e 50 metri e 22 cm.

La voce e i suoni vengono affidati — come abbiamo detto — alle radio-onde irradiate sulla stazione trasmittente. Perchè tale concetto risulti più chiaro si può pensare a un disco fonografico, — esso rappresenta le radio-onde, — sul quale sono stati incisi i suoni. Quel tratto del solco nel quale non sono incisi i suoni rappresenta l'onda portante, ossia l'onda adatta ad essere modulata, come il solco è adatto ad essere inciso.

Un'onda non modulata irradiata da una stazione non costituisce un segnale audibile. Non appena ad essa vengono affidati i suoni, ossia non appena ha inizio la modulazione, la sua ampiezza varia con il ritmo determinato dalle varie frequenze acustiche.

Per frequenza acustica s'intende il numero di onde sonore comprese in un secondo. Tutti i suoni sono formati da onde sonore che si propagano nell'aria, mentre le radioonde si propagano nell'etere (l'etere non esiste fisicamente ma è una finzione matematica escogitata allo scopo di poter considerare un « mezzo » di propagazione delle onde stesse). Senza l'aria un suono non può propagarsi nello spazio, mentre una radio-onda si propaga meglio in uno spazio vuoto che nell'aria. Il suono deve propagarsi anche in altri mezzi, con velocità diverse, come nell'acqua o lungo un conduttore metallico.

Le frequenze sonore sono comprese fra i 40 e i 15.000 cicli. I suoni più bassi sono compresi nella gamma inferiore, fra i 40 e i 200 cicli. I suoni più alti comprendono invece la gamma superiore che può estendersi, per alcuni suoni acutissimi, sino ai 20.000 cicli, ma che praticamente arriva ai 15.000 cicli. Però queste frequenze molto alte non vengono radiotrasmesse e un tempo il limite massimo era segnato dai 10.000 cicli, però col continuo aumento di stazioni trasmittenti questo limite è stato alquanto ridotto ed attualmente arriva soltanto ai 4500 cicli, sicchè la gamma delle frequenze musicali trasmessa dalle stazioni radiofoniche va dai 40 ai 4500 cicli, purtuttavia però la riproduzione fonica è ancora sufficientemente buona.

La figura 3 indica in a) una vibrazione senora, quella che potrebbe essere prodotta da uno strumento musicale, in b) una radio-onda senza modulazione, in c) la stessa radio-onda modulata dalla vibrazione sonora a). L'ampiezza dell'onda portante è stata variata dalla vibrazione sonora, ossia le radio-onde modulate variano in ampiezza con un ritmo determinato dalle frequenze acustiche che trasportano. A un suono alla frequenza, supponiamo, di 1000 cicli, trasportato da una radio-onda di 300 metri, ossia di 1.000.000 di cicli, corrispondono per ogni ciclo sonoro 1000 cicli della radio-cnda. All'atto della ricezione occorre separare il primo dai secondi, e questo è ottenuto con lo studio rivelatore dell'apparecchio ricevente.

Una stazione che trasmette con la lunghezza d'onda di 300 metri non occupa nella gamma normale delle frequenze usate per le radio-diffusioni un canale rappresentato da questa onda, ma un canale maggicre, rappresentato dalle frequenze musicali normalmente trasmesse. La figura 4 indica l'onda portante di una stazione in a) e l'onda modulata in b). Se le frequenze acustiche della modulazione raggiungono i 5000 cicli, ossia 5 kc, l'onda modulata occupa un canale di

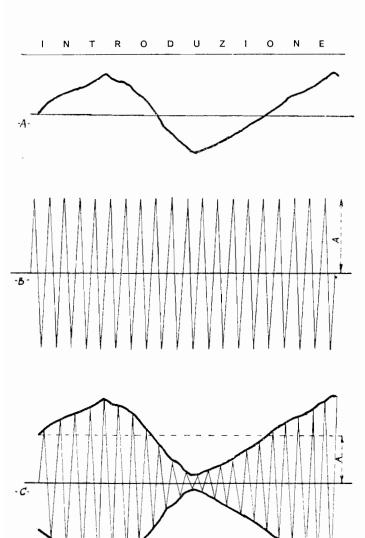


Fig. 3, - Come il suono viene « inciso » sulle radio-onde: A) corrente musicale; B) radio-onda pura; C) radio-onda modulata.

10 kc, ossia 5 kc per lato. Abbiamo assunta, per l'esempio, un'onda di 300 metri, quindi la sua frequenza portante è quella di 1000 kc, mentre quella modulata varia da 995 kc e 1005 kc.

Le stazioni che occupano le frequenze a fianco di quella del nostro esempio hanno bisogno anch'esse di un canale di 10 kc, nel quale far stare le frequenze acustiche da tra-

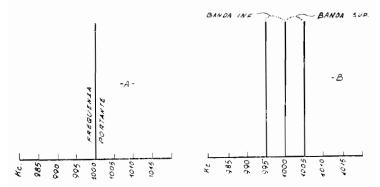


Fig. 4. - I suoni portati dalle radio-onde occupano un canale di frequenze come i suoni incisi sui dischi sonori occupano un solco: A) radio-onda portante (senza modulazione); B) radio-onda con le bande laterali ospitanti le modulazioni sonore.

smettere. I canali di trasmissione delle varie stazioni sono perciò simili ai solchi tracciati sopra un disco fonografico. Se il disco è di 30 cm di diametro può starci un dato numero di solchi, che rappresentano altrettante stazioni. I 30 cm di diametro del disco sono rappresentati dalla gamma delle frequenze dai 550 kc ai 1500 kc, e in questa gamma possono trovar posto 95 stazioni, non una di più. Praticamente invece le stazioni sono in numero molto maggiore, e allora si ricorse all'espediente di affidare uno stesso canale a due o più stazioni, trasmittenti con debole potenza e quindi difficilmente interferibili, nonchè quello di restringere il canale stesso da 10 kc e 9 kc. Le stazioni possono perciò

trasmettere entro un canale di 9 kc, ossia possono trasmettere delle frequenze musicali massime di 4500 cicli (4,5 kc) che si dispongono ai due lati della frequenza portante. È facile comprendere che riducendo, per una ipotesi, il canale da 9 kc a soli 2 kc resterebbero moltissimi canali a disposizione di altre stazioni, che potrebbero trasmettere senza disturbarsi a vicenda, ma questo non è possibile perchè in un canale di 2 soli kc si possono inviare delle frequenze acustiche massime di 1000 cicli, ossia soltanto i suoni più bassi. Tutte le stazioni di colpo assumerebbero una voce profondamente cupa, per la mancanza di tutti i suoni medi e alti.

Perchè una stazione disturba quella vicina quando trasmette con una frequenza superiore ai 4500 cicli (le frequenze musicali arrivano, come abbiamo detto, ai 15.000 cicli) è facile comprenderlo: invade il solco dell'altra, come una incisione fonografica troppo profonda invade i solchi laterali.

Le frequenze acustiche di modulazione che si trovano ai lati della frequenza portante e che costituiscono il canale di trasmissione si chiamano bande laterali di modulazione.